Cargando…
Machine Learning Approach to Analyze the Heavy Quark Diffusion Coefficient in Relativistic Heavy Ion Collisions
The diffusion coefficient of heavy quarks in a deconfined medium is examined in this research using a deep convolutional neural network (CNN) that is trained with data from relativistic heavy ion collisions involving heavy flavor hadrons. The CNN is trained using observables such as the nuclear modi...
Autores principales: | Guo, Rui, Li, Yonghui, Chen, Baoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670119/ https://www.ncbi.nlm.nih.gov/pubmed/37998255 http://dx.doi.org/10.3390/e25111563 |
Ejemplares similares
-
Ballistic diffusion of heavy quarks in the early stage of relativistic heavy ion collisions at RHIC and the LHC
por: Liu, Jun-Hong, et al.
Publicado: (2020) -
Relativistic heavy ion collisions: in search of the quark-gluon plasma
por: Jacob, Maurice René Michel
Publicado: (1989) -
Relativistic heavy-ion collisions
por: Bhalerao, Rajeev S.
Publicado: (2014) -
Ultra-relativistic heavy-ion collisions or the quest for the quark-gluon plasma
por: Schükraft, Jürgen
Publicado: (1991) -
Ultra-relativistic heavy-ion collisions: searching for the quark-gluon plasma
por: Schükraft, Jürgen
Publicado: (1992)