Cargando…
Fault Diagnosis of Rotating Machinery Using Kernel Neighborhood Preserving Embedding and a Modified Sparse Bayesian Classification Model
Fault diagnosis of rotating machinery plays an important role in modern industrial machines. In this paper, a modified sparse Bayesian classification model (i.e., Standard_SBC) is utilized to construct the fault diagnosis system of rotating machinery. The features are extracted and adopted as the in...
Autores principales: | Lu, Lixin, Wang, Weihao, Kong, Dongdong, Zhu, Junjiang, Chen, Dongxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670152/ https://www.ncbi.nlm.nih.gov/pubmed/37998242 http://dx.doi.org/10.3390/e25111549 |
Ejemplares similares
-
Multi-Filter Clustering Fusion for Feature Selection in Rotating Machinery Fault Classification
por: Mochammad, Solichin, et al.
Publicado: (2022) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
Sensors Information Fusion System with Fault Detection Based on Multi-Manifold Regularization Neighborhood Preserving Embedding
por: Wu, Jianping, et al.
Publicado: (2019) -
Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning
por: Inyang, Udeme Ibanga, et al.
Publicado: (2023) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023)