Cargando…
Improving Existing Segmentators Performance with Zero-Shot Segmentators
This paper explores the potential of using the SAM (Segment-Anything Model) segmentator to enhance the segmentation capability of known methods. SAM is a promptable segmentation system that offers zero-shot generalization to unfamiliar objects and images, eliminating the need for additional training...
Autores principales: | Nanni, Loris, Fusaro, Daniel, Fantozzi, Carlo, Pretto, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670220/ https://www.ncbi.nlm.nih.gov/pubmed/37998194 http://dx.doi.org/10.3390/e25111502 |
Ejemplares similares
-
Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation
por: Nanni, Loris, et al.
Publicado: (2023) -
Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation
por: Shi, Peilun, et al.
Publicado: (2023) -
Initial segments of degrees below zero
por: Epstein, Richard L
Publicado: (1981) -
Detecting Errors with Zero-Shot Learning
por: Wu, Xiaoyu, et al.
Publicado: (2022) -
CLIP-Driven Prototype Network for Few-Shot Semantic Segmentation
por: Guo, Shi-Cheng, et al.
Publicado: (2023)