Cargando…
Hyper-Dense_Lung_Seg: Multimodal-Fusion-Based Modified U-Net for Lung Tumour Segmentation Using Multimodality of CT-PET Scans
The majority of cancer-related deaths globally are due to lung cancer, which also has the second-highest mortality rate. The segmentation of lung tumours, treatment evaluation, and tumour stage classification have become significantly more accessible with the advent of PET/CT scans. With the advent...
Autores principales: | Alshmrani, Goram Mufarah, Ni, Qiang, Jiang, Richard, Muhammed, Nada |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670323/ https://www.ncbi.nlm.nih.gov/pubmed/37998617 http://dx.doi.org/10.3390/diagnostics13223481 |
Ejemplares similares
-
A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images
por: Alshmrani, Goram Mufarah M., et al.
Publicado: (2023) -
SegChaNet: A Novel Model for Lung Cancer Segmentation in CT Scans
por: Cifci, Mehmet Akif
Publicado: (2022) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020)