Cargando…
Advancing Federated Learning through Verifiable Computations and Homomorphic Encryption
Federated learning, as one of the three main technical routes for privacy computing, has been widely studied and applied in both academia and industry. However, malicious nodes may tamper with the algorithm execution process or submit false learning results, which directly affects the performance of...
Autores principales: | Zhang, Bingxue, Lu, Guangguang, Qiu, Pengpeng, Gui, Xumin, Shi, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670442/ https://www.ncbi.nlm.nih.gov/pubmed/37998241 http://dx.doi.org/10.3390/e25111550 |
Ejemplares similares
-
Training of Classification Models via Federated Learning and Homomorphic Encryption
por: Angulo, Eduardo, et al.
Publicado: (2023) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022) -
Private genome analysis through homomorphic encryption
por: Kim, Miran, et al.
Publicado: (2015) -
Achieving GWAS with homomorphic encryption
por: Sim, Jun Jie, et al.
Publicado: (2020) -
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021)