Cargando…
Principal Component Analysis and t-Distributed Stochastic Neighbor Embedding Analysis in the Study of Quantum Approximate Optimization Algorithm Entangled and Non-Entangled Mixing Operators
In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior of entangled and non-entangled mixing operators within the Quantum Approximate Optimization Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters generated for max-cut problem...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670472/ https://www.ncbi.nlm.nih.gov/pubmed/37998191 http://dx.doi.org/10.3390/e25111499 |
Sumario: | In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior of entangled and non-entangled mixing operators within the Quantum Approximate Optimization Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters generated for max-cut problems with cyclic and complete configurations. This dataset encompasses the resulting [Formula: see text] , [Formula: see text] , and [Formula: see text] parameters for QAOA models at different depths ([Formula: see text] , [Formula: see text] , and [Formula: see text]) with or without an entanglement stage within the mixing operator. Our findings reveal distinct behaviors when processing the different parameters with PCA and t-SNE. Specifically, most of the entangled QAOA models demonstrate an enhanced capacity to preserve information in the mapping, along with a greater level of correlated information detectable by PCA and t-SNE. Analyzing the overall mapping results, a clear differentiation emerges between entangled and non-entangled models. This distinction is quantified numerically through explained variance in PCA and Kullback–Leibler divergence (post-optimization) in t-SNE. These disparities are also visually evident in the mapping data produced by both methods, with certain entangled QAOA models displaying clustering effects in both visualization techniques. |
---|