Cargando…
Maximizing Local Rewards on Multi-Agent Quantum Games through Gradient-Based Learning Strategies
This article delves into the complex world of quantum games in multi-agent settings, proposing a model wherein agents utilize gradient-based strategies to optimize local rewards. A learning model is introduced to focus on the learning efficacy of agents in various games and the impact of quantum cir...
Autores principales: | Silva, Agustin, Zabaleta, Omar Gustavo, Arizmendi, Constancio Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670538/ https://www.ncbi.nlm.nih.gov/pubmed/37998177 http://dx.doi.org/10.3390/e25111484 |
Ejemplares similares
-
Quantum Locality in Game Strategy
por: Melo-Luna, Carlos A., et al.
Publicado: (2017) -
Study of entanglement via a multi-agent dynamical quantum game
por: Te’eni, Amit, et al.
Publicado: (2023) -
Study on Multi-Agent Evolutionary Game of Emergency Management of Public Health Emergencies Based on Dynamic Rewards and Punishments
por: Fan, Ruguo, et al.
Publicado: (2021) -
Strategies for winning the dividend game: maximizing returns from the stock market
por: Appel, Gerald
Publicado: (2011) -
Modeling the Violation of Reward Maximization and Invariance in Reinforcement Schedules
por: La Camera, Giancarlo, et al.
Publicado: (2008)