Cargando…

Solid-State Fermented Pineapple Peel: A Novel Food Ingredient with Antioxidant and Anti-Inflammatory Properties

It has been reported that pineapple (Ananas comosus) contains healthy nutrients and phytochemicals associated with antioxidant and anti-inflammatory capacities. However, a substantial amount of pineapple residue is produced due to a lack of valorization applications at the industrial scale, resultin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortega-Hernández, Erika, Martinez-Alvarado, Lucio, Acosta-Estrada, Beatriz A., Antunes-Ricardo, Marilena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670571/
https://www.ncbi.nlm.nih.gov/pubmed/38002219
http://dx.doi.org/10.3390/foods12224162
Descripción
Sumario:It has been reported that pineapple (Ananas comosus) contains healthy nutrients and phytochemicals associated with antioxidant and anti-inflammatory capacities. However, a substantial amount of pineapple residue is produced due to a lack of valorization applications at the industrial scale, resulting in the loss of valuable nutrients. Solid-state fermentation (SSF) is proposed as an innovative strategy to enhance the release of bound phenolics from pineapple residues. In this work, the effects of SSF of pineapple peels with Lactobacillus plantarum, Lactobacillus rhamnosus, and Aspergillus oryzae on the release of phenolic compounds and their antioxidant and anti-inflammatory activities were evaluated, respectively. Pineapple peel extracts after SSF showed an increase in the release of phenolic compounds (248.11% with L. plantarum, 182% with A. oryzae, and 180.10% with L. rhamnosus), which led to an increase in the cellular antioxidant (81.94% with L. rhamnosus) and anti-inflammatory potential (nitric oxide inhibition of 62% with L. rhamnosus) compared to non-fermented extracts. Therefore, SSF of pineapple peels with L. plantarum, L. rhamnosus, and A. oryzae thrives as a new approach for the production of secondary metabolites with remarkable biological benefits, which can be the precursors for novel biofortified and nutraceutical-enriched foods that meet the needs of the most demanding and health-conscious consumers.