Cargando…
Machine Learning Model of ResNet50-Ensemble Voting for Malignant–Benign Small Pulmonary Nodule Classification on Computed Tomography Images
SIMPLE SUMMARY: Machine learning methods have shown promise in accurately identifying small lung nodules. However, further exploration is needed to fully harness the potential of machine learning in distinguishing between benign and malignant nodules. This study aimed to develop and evaluate a ResNe...
Autores principales: | Li, Weiming, Yu, Siqi, Yang, Runhuang, Tian, Yixing, Zhu, Tianyu, Liu, Haotian, Jiao, Danyang, Zhang, Feng, Liu, Xiangtong, Tao, Lixin, Gao, Yan, Li, Qiang, Zhang, Jingbo, Guo, Xiuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670717/ https://www.ncbi.nlm.nih.gov/pubmed/38001677 http://dx.doi.org/10.3390/cancers15225417 |
Ejemplares similares
-
Deep-Learning Model of ResNet Combined with CBAM for Malignant–Benign Pulmonary Nodules Classification on Computed Tomography Images
por: Zhang, Yanfei, et al.
Publicado: (2023) -
Differential diagnostic value of the ResNet50, random forest, and DS
ensemble models for papillary thyroid carcinoma and other thyroid
nodules
por: Deng, Chengwen, et al.
Publicado: (2022) -
ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis
por: Sakli, Nizar, et al.
Publicado: (2022) -
Development of revised ResNet-50 for diabetic retinopathy detection
por: Lin, Chun-Ling, et al.
Publicado: (2023) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022)