Cargando…

Degree-Aware Graph Neural Network Quantization

In this paper, we investigate the problem of graph neural network quantization. Despite the great success on convolutional neural networks, directly applying current network quantization approaches to graph neural networks faces two challenges. First, the fixed-scale parameter in the current methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Ziqin, Jin, Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670813/
https://www.ncbi.nlm.nih.gov/pubmed/37998202
http://dx.doi.org/10.3390/e25111510
Descripción
Sumario:In this paper, we investigate the problem of graph neural network quantization. Despite the great success on convolutional neural networks, directly applying current network quantization approaches to graph neural networks faces two challenges. First, the fixed-scale parameter in the current methods cannot flexibly fit diverse tasks and network architectures. Second, the variations of node degree in a graph leads to uneven responses, limiting the accuracy of the quantizer. To address these two challenges, we introduce learnable scale parameters that can be optimized jointly with the graph networks. In addition, we propose degree-aware normalization to process nodes with different degrees. Experiments on different tasks, baselines, and datasets demonstrate the superiority of our method against previous state-of-the-art ones.