Cargando…
Degree-Aware Graph Neural Network Quantization
In this paper, we investigate the problem of graph neural network quantization. Despite the great success on convolutional neural networks, directly applying current network quantization approaches to graph neural networks faces two challenges. First, the fixed-scale parameter in the current methods...
Autores principales: | Fan, Ziqin, Jin, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670813/ https://www.ncbi.nlm.nih.gov/pubmed/37998202 http://dx.doi.org/10.3390/e25111510 |
Ejemplares similares
-
Quantized visual awareness
por: Escobar, W. A.
Publicado: (2013) -
Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference
por: Hawks, Benjamin, et al.
Publicado: (2021) -
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
por: Sun, Ninghua, et al.
Publicado: (2022) -
Collision-aware interactive simulation using graph neural networks
por: Zhu, Xin, et al.
Publicado: (2022)