Cargando…
Development of optically controlled “living electrodes” with long-projecting axon tracts for a synaptic brain-machine interface
For implantable neural interfaces, functional/clinical outcomes are challenged by limitations in specificity and stability of inorganic microelectrodes. A biological intermediary between microelectrical devices and the brain may improve specificity and longevity through (i) natural synaptic integrat...
Autores principales: | Adewole, Dayo O., Struzyna, Laura A., Burrell, Justin C., Harris, James P., Nemes, Ashley D., Petrov, Dmitriy, Kraft, Reuben H., Chen, H. Isaac, Serruya, Mijail D., Wolf, John A., Cullen, D. Kacy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670819/ https://www.ncbi.nlm.nih.gov/pubmed/33523957 http://dx.doi.org/10.1126/sciadv.aay5347 |
Ejemplares similares
-
Bioactive Neuroelectronic Interfaces
por: Adewole, Dayo O., et al.
Publicado: (2019) -
A computational model of bidirectional axonal growth in micro-tissue engineered neuronal networks (micro-TENNs)
por: Marinov, Toma, et al.
Publicado: (2020) -
Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease
por: Harris, James P., et al.
Publicado: (2020) -
Neural Substrate Expansion for the Restoration of Brain Function
por: Chen, H. Isaac, et al.
Publicado: (2016) -
Bottlenecks to clinical translation of direct brain-computer interfaces
por: Serruya, Mijail D.
Publicado: (2014)