Cargando…
CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset
SIMPLE SUMMARY: Adaptive radiotherapy ensures precise radiation dose deposition to the target volume while minimizing radiation-induced toxicities. However, due to poor image quality and inaccurate HU values, it is currently challenging to realize adaptive radiotherapy with cone beam computed tomogr...
Autores principales: | Liu, Xi, Yang, Ruijie, Xiong, Tianyu, Yang, Xueying, Li, Wen, Song, Liming, Zhu, Jiarui, Wang, Mingqing, Cai, Jing, Geng, Lisheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670900/ https://www.ncbi.nlm.nih.gov/pubmed/38001738 http://dx.doi.org/10.3390/cancers15225479 |
Ejemplares similares
-
Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy
por: Wynne, Jacob F., et al.
Publicado: (2023) -
Radiotherapy delivery error detection with electronic portal imaging device (EPID)-based in vivo dosimetry
por: Yang, Xueying, et al.
Publicado: (2023) -
Dosimetric comparison of deformable image registration and synthetic CT generation based on CBCT images for organs at risk in cervical cancer radiotherapy
por: Chang, Yankui, et al.
Publicado: (2023) -
EdNet: A Large-Scale Hierarchical Dataset in Education
por: Choi, Youngduck, et al.
Publicado: (2020) -
Assessment of CBCT–based synthetic CT generation accuracy for adaptive radiotherapy planning
por: O'Hara, Christopher J., et al.
Publicado: (2022)