Cargando…
A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations
The automatic detection of cells in microscopy image sequences is a significant task in biomedical research. However, routine microscopy images with cells, which are taken during the process whereby constant division and differentiation occur, are notoriously difficult to detect due to changes in th...
Autores principales: | Wu, Hao, Niyogisubizo, Jovial, Zhao, Keliang, Meng, Jintao, Xi, Wenhui, Li, Hongchang, Pan, Yi, Wei, Yanjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670924/ https://www.ncbi.nlm.nih.gov/pubmed/38003217 http://dx.doi.org/10.3390/ijms242216028 |
Ejemplares similares
-
Editorial: Computational solutions for microbiome and metagenomics sequencing analyses, Volume II
por: Niyogisubizo, Jovial, et al.
Publicado: (2023) -
Weakly supervised learning analysis of Aβ plaque distribution in the whole rat brain
por: Chen, Zhiyi, et al.
Publicado: (2023) -
Weakly supervised segmentation for real-time surgical tool tracking
por: Lee, Eung-Joo, et al.
Publicado: (2019) -
Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images
por: Liu, Xiaoming, et al.
Publicado: (2022) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021)