Cargando…
Comment on Redmayne, M.; Maisch, D.R. ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. Int. J. Environ. Res. Public Health 2023, 20, 5267
This article discusses the contention in the commented-upon paper that Brillouin precursors generated by 5G New Radio (5G NR) and other cellular systems are a possible cause of tissue damage at deeper layers of tissue than the power penetration depth of the carrier frequency. The original theory for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671112/ https://www.ncbi.nlm.nih.gov/pubmed/37998260 http://dx.doi.org/10.3390/ijerph20227029 |
Sumario: | This article discusses the contention in the commented-upon paper that Brillouin precursors generated by 5G New Radio (5G NR) and other cellular systems are a possible cause of tissue damage at deeper layers of tissue than the power penetration depth of the carrier frequency. The original theory for Brillouin precursors from pulsed radiofrequency signals (RF-EMF) and speculation about their possible health effects dates back to the 1990’s and was based on studies of the propagation of very short (nanosecond) ultrawide-bandwidth RF pulses through water. This assumption is not correct for cellular telephone signals due to their narrow bandwidth. The commented-on paper provides no alternative rationale as to why Brillouin effects should cause tissue damage from RF-EMF radiation from cellular and other communications systems. Other inaccuracies in this paper concerning thermal responses of tissue to RF-EMF are also noted. |
---|