Cargando…

Thermostable Basic Fibroblast Growth Factor Enhances the Production and Activity of Human Wharton’s Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles

Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC)-derived exosomes contain a diverse cargo and exhibit remarkable biological activity, rendering them suitable for regenerative and immune-modulating functions. However, the quantity of secretion is insufficient. A large body of prior work has inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, SangRok, Kim, SeJong, Lim, KyungMin, Shin, YeoKyung, Song, Kwonwoo, Kang, Geun-Ho, Kim, Dae Young, Shin, Hang-Cheol, Cho, Ssang-Goo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671285/
https://www.ncbi.nlm.nih.gov/pubmed/38003648
http://dx.doi.org/10.3390/ijms242216460
Descripción
Sumario:Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC)-derived exosomes contain a diverse cargo and exhibit remarkable biological activity, rendering them suitable for regenerative and immune-modulating functions. However, the quantity of secretion is insufficient. A large body of prior work has investigated the use of various growth factors to enhance MSC-derived exosome production. In this study, we evaluated the utilization of thermostable basic fibroblast growth factor (TS-bFGF) with MSC culture and exosome production. MSCs cultured with TS-bFGF displayed superior proliferation, as evidenced by cell cycle analysis, compared with wild-type bFGF (WT-bFGF). Stemness was assessed through mRNA expression level and colony-forming unit (CFU) assays. Furthermore, nanoparticle tracking analysis (NTA) measurements revealed that MSCs cultured with TS-bFGF produced a greater quantity of exosomes, particularly under three-dimensional culture conditions. These produced exosomes demonstrated substantial anti-inflammatory and wound-healing effects, as confirmed by nitric oxide (NO) assays and scratch assays. Taken together, we demonstrate that utilization of TS-bFGF for WJ-MSC-derived exosome production not only increases exosome yield but also enhances the potential for various applications in inflammation regulation and wound healing.