Cargando…
Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology
RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671286/ https://www.ncbi.nlm.nih.gov/pubmed/38003667 http://dx.doi.org/10.3390/ijms242216477 |
_version_ | 1785149396177911808 |
---|---|
author | Arzumanian, Viktoriia A. Kurbatov, Ilya Y. Ptitsyn, Konstantin G. Khmeleva, Svetlana A. Kurbatov, Leonid K. Radko, Sergey P. Poverennaya, Ekaterina V. |
author_facet | Arzumanian, Viktoriia A. Kurbatov, Ilya Y. Ptitsyn, Konstantin G. Khmeleva, Svetlana A. Kurbatov, Leonid K. Radko, Sergey P. Poverennaya, Ekaterina V. |
author_sort | Arzumanian, Viktoriia A. |
collection | PubMed |
description | RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic–translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications’ multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches. |
format | Online Article Text |
id | pubmed-10671286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106712862023-11-18 Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology Arzumanian, Viktoriia A. Kurbatov, Ilya Y. Ptitsyn, Konstantin G. Khmeleva, Svetlana A. Kurbatov, Leonid K. Radko, Sergey P. Poverennaya, Ekaterina V. Int J Mol Sci Article RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic–translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications’ multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches. MDPI 2023-11-18 /pmc/articles/PMC10671286/ /pubmed/38003667 http://dx.doi.org/10.3390/ijms242216477 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arzumanian, Viktoriia A. Kurbatov, Ilya Y. Ptitsyn, Konstantin G. Khmeleva, Svetlana A. Kurbatov, Leonid K. Radko, Sergey P. Poverennaya, Ekaterina V. Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title | Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title_full | Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title_fullStr | Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title_full_unstemmed | Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title_short | Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology |
title_sort | identifying n6-methyladenosine sites in hepg2 cell lines using oxford nanopore technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671286/ https://www.ncbi.nlm.nih.gov/pubmed/38003667 http://dx.doi.org/10.3390/ijms242216477 |
work_keys_str_mv | AT arzumanianviktoriiaa identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT kurbatovilyay identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT ptitsynkonstanting identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT khmelevasvetlanaa identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT kurbatovleonidk identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT radkosergeyp identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology AT poverennayaekaterinav identifyingn6methyladenosinesitesinhepg2celllinesusingoxfordnanoporetechnology |