Cargando…

Increase in hnRNPA1 Expression Suffices to Kill Motor Neurons in Transgenic Rats

A dominant mutation in hnRNPA1 causes amyotrophic lateral sclerosis (ALS), but it is not known whether this mutation leads to motor neuron death through increased or decreased function. To elucidate the relationship between pathogenic hnRNPA1 mutation and its native function, we created novel transg...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Bo, Liu, Xionghao, Zhang, Tingting, Wu, Qinxue, Huang, Cao, Xia, Xu-Gang, Zhou, Hongxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671660/
https://www.ncbi.nlm.nih.gov/pubmed/38003404
http://dx.doi.org/10.3390/ijms242216214
Descripción
Sumario:A dominant mutation in hnRNPA1 causes amyotrophic lateral sclerosis (ALS), but it is not known whether this mutation leads to motor neuron death through increased or decreased function. To elucidate the relationship between pathogenic hnRNPA1 mutation and its native function, we created novel transgenic rats that overexpressed wildtype rat hnRNPA1 exclusively in motor neurons. This targeted expression of wildtype hnRNPA1 caused severe motor neuron loss and subsequent denervation muscle atrophy in transgenic rats that recapitulated the characteristics of ALS. These findings demonstrate that the augmentation of hnRNPA1 expression suffices to trigger motor neuron degeneration and the manifestation of ALS-like phenotypes. It is reasonable to infer that an amplification of an as-yet undetermined hnRNPA1 function plays a pivotal role in the pathogenesis of familial ALS caused by pathogenic hnRNPA1 mutation.