Cargando…
Rhizoaspergillin A and Rhizoaspergillinol A, including a Unique Orsellinic Acid–Ribose–Pyridazinone-N-Oxide Hybrid, from the Mangrove Endophytic Fungus Aspergillus sp. A1E3
Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configurations of rhizoaspergillin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671915/ https://www.ncbi.nlm.nih.gov/pubmed/37999422 http://dx.doi.org/10.3390/md21110598 |
Sumario: | Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configurations of rhizoaspergillinol A (2) and averufanin (3) were established by extensive NMR investigations and quantum-chemical electronic circular dichroism (ECD) calculations. Most notably, the constitution and absolute configuration of rhizoaspergillin A (1) were unambiguously determined by single-crystal X-ray diffraction analysis of its tri-pivaloyl derivative 4, conducted with Cu Kα radiation, whereas those of averufanin (3) were first clarified by quantum-chemical ECD calculations. Rhizoaspergillin A is the first orsellinic acid–ribose–pyridazinone-N-oxide hybrid containing a unique β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) and averufanin (3) are sterigmatocystin and anthraquinone derivatives, respectively. From the perspective of biosynthesis, rhizoaspergillin A (1) could be originated from the combined assembly of three building blocks, viz., orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an unprecedented alkaloid-N-oxide involving biosynthetic pathways of polyketides, pentose, and amino acids. In addition, rhizoaspergillinol A (2) exhibited potent antiproliferative activity against four cancer cell lines. It could dose-dependently induce G2/M phase arrest in HepG2 cells. |
---|