Cargando…

Breast Cancer Detection with an Ensemble of Deep Learning Networks Using a Consensus-Adaptive Weighting Method

Breast cancer’s high mortality rate is often linked to late diagnosis, with mammograms as key but sometimes limited tools in early detection. To enhance diagnostic accuracy and speed, this study introduces a novel computer-aided detection (CAD) ensemble system. This system incorporates advanced deep...

Descripción completa

Detalles Bibliográficos
Autores principales: Dehghan Rouzi, Mohammad, Moshiri, Behzad, Khoshnevisan, Mohammad, Akhaee, Mohammad Ali, Jaryani, Farhang, Salehi Nasab, Samaneh, Lee, Myeounggon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671922/
https://www.ncbi.nlm.nih.gov/pubmed/37998094
http://dx.doi.org/10.3390/jimaging9110247
Descripción
Sumario:Breast cancer’s high mortality rate is often linked to late diagnosis, with mammograms as key but sometimes limited tools in early detection. To enhance diagnostic accuracy and speed, this study introduces a novel computer-aided detection (CAD) ensemble system. This system incorporates advanced deep learning networks—EfficientNet, Xception, MobileNetV2, InceptionV3, and Resnet50—integrated via our innovative consensus-adaptive weighting (CAW) method. This method permits the dynamic adjustment of multiple deep networks, bolstering the system’s detection capabilities. Our approach also addresses a major challenge in pixel-level data annotation of faster R-CNNs, highlighted in a prominent previous study. Evaluations on various datasets, including the cropped DDSM (Digital Database for Screening Mammography), DDSM, and INbreast, demonstrated the system’s superior performance. In particular, our CAD system showed marked improvement on the cropped DDSM dataset, enhancing detection rates by approximately 1.59% and achieving an accuracy of 95.48%. This innovative system represents a significant advancement in early breast cancer detection, offering the potential for more precise and timely diagnosis, ultimately fostering improved patient outcomes.