Cargando…
Breast Cancer Detection with an Ensemble of Deep Learning Networks Using a Consensus-Adaptive Weighting Method
Breast cancer’s high mortality rate is often linked to late diagnosis, with mammograms as key but sometimes limited tools in early detection. To enhance diagnostic accuracy and speed, this study introduces a novel computer-aided detection (CAD) ensemble system. This system incorporates advanced deep...
Autores principales: | Dehghan Rouzi, Mohammad, Moshiri, Behzad, Khoshnevisan, Mohammad, Akhaee, Mohammad Ali, Jaryani, Farhang, Salehi Nasab, Samaneh, Lee, Myeounggon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671922/ https://www.ncbi.nlm.nih.gov/pubmed/37998094 http://dx.doi.org/10.3390/jimaging9110247 |
Ejemplares similares
-
An automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions
por: Toosi, Ramin, et al.
Publicado: (2021) -
A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler
por: Stephen, Okeke, et al.
Publicado: (2022) -
Ensemble deep learning for brain tumor detection
por: Alsubai, Shtwai, et al.
Publicado: (2022) -
Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem
por: Mohammadi, Sara, et al.
Publicado: (2022) -
Deep learning‐based microarray cancer classification and ensemble gene selection approach
por: Rezaee, Khosro, et al.
Publicado: (2022)