Cargando…
The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight
Oxidative stress and apoptosis are involved in the pathogenesis of obesity-related diseases. This observational study investigates the antioxidant and apoptotic markers response to an oral glucose tolerance test (OGTT) in a population of overweight children and adolescents, with normal (NGT) or impa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672007/ https://www.ncbi.nlm.nih.gov/pubmed/38003707 http://dx.doi.org/10.3390/ijms242216517 |
Sumario: | Oxidative stress and apoptosis are involved in the pathogenesis of obesity-related diseases. This observational study investigates the antioxidant and apoptotic markers response to an oral glucose tolerance test (OGTT) in a population of overweight children and adolescents, with normal (NGT) or impaired glucose tolerance (IGT). Glucose, insulin, and C-peptide concentrations, as well as oxidative stress (SOD, GPx3) and apoptotic markers (Apo1fas, cck18), were determined at T = 0, 30, 60, 90, 120, and 180 min after glucose intake during OGTT. The lipid profile, thyroid function, insulin-like growth factor1, leptin, ghrelin, and adiponectin were also measured at baseline. The 45 participants, with a mean age of 12.15 (±2.3) years old, were divided into two subcategories: those with NGΤ (n = 31) and those with IGT (n = 14). The area under the curve (AUC) of glucose, insulin, and C-peptide was greater in children with IGT; however, only glucose differences were statistically significant. SOD and GPx3 levels were higher at all time points in the IGT children. Apo1fas and cck18 levels were higher in the NGT children at most time points, whereas Adiponectin was lower in the IGT group. Glucose increased during an OGTT accompanied by a simultaneous increase in antioxidant factors, which may reflect a compensatory mechanism against the impending increase in oxidative stress in children with IGT. |
---|