Cargando…

Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making

Cancer is the second major cause of disease-related death worldwide, and its accurate early diagnosis and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a complex and heterogeneous disorder, results from the disruption and alteration of a wide variety of biologica...

Descripción completa

Detalles Bibliográficos
Autores principales: Fawaz, Alaa, Ferraresi, Alessandra, Isidoro, Ciro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672164/
https://www.ncbi.nlm.nih.gov/pubmed/38003905
http://dx.doi.org/10.3390/jpm13111590
_version_ 1785140326901481472
author Fawaz, Alaa
Ferraresi, Alessandra
Isidoro, Ciro
author_facet Fawaz, Alaa
Ferraresi, Alessandra
Isidoro, Ciro
author_sort Fawaz, Alaa
collection PubMed
description Cancer is the second major cause of disease-related death worldwide, and its accurate early diagnosis and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a complex and heterogeneous disorder, results from the disruption and alteration of a wide variety of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient that could have an impact on the prognosis and patient’s response to the therapy. The integration of all these data relies on gathering of several experts and may require considerable time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision. Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid and accurate analysis and integration of patient’s big data, and support the physician in making diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from possible diagnostic and prognostic errors in the interpretation of images or biochemical–clinical data. Here, we first describe the methods used by systems biology for combining AI with omics and then discuss the potential, challenges, limitations, and critical issues in using AI in cancer research.
format Online
Article
Text
id pubmed-10672164
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106721642023-11-10 Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making Fawaz, Alaa Ferraresi, Alessandra Isidoro, Ciro J Pers Med Review Cancer is the second major cause of disease-related death worldwide, and its accurate early diagnosis and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a complex and heterogeneous disorder, results from the disruption and alteration of a wide variety of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient that could have an impact on the prognosis and patient’s response to the therapy. The integration of all these data relies on gathering of several experts and may require considerable time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision. Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid and accurate analysis and integration of patient’s big data, and support the physician in making diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from possible diagnostic and prognostic errors in the interpretation of images or biochemical–clinical data. Here, we first describe the methods used by systems biology for combining AI with omics and then discuss the potential, challenges, limitations, and critical issues in using AI in cancer research. MDPI 2023-11-10 /pmc/articles/PMC10672164/ /pubmed/38003905 http://dx.doi.org/10.3390/jpm13111590 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Fawaz, Alaa
Ferraresi, Alessandra
Isidoro, Ciro
Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title_full Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title_fullStr Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title_full_unstemmed Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title_short Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making
title_sort systems biology in cancer diagnosis integrating omics technologies and artificial intelligence to support physician decision making
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672164/
https://www.ncbi.nlm.nih.gov/pubmed/38003905
http://dx.doi.org/10.3390/jpm13111590
work_keys_str_mv AT fawazalaa systemsbiologyincancerdiagnosisintegratingomicstechnologiesandartificialintelligencetosupportphysiciandecisionmaking
AT ferraresialessandra systemsbiologyincancerdiagnosisintegratingomicstechnologiesandartificialintelligencetosupportphysiciandecisionmaking
AT isidorociro systemsbiologyincancerdiagnosisintegratingomicstechnologiesandartificialintelligencetosupportphysiciandecisionmaking