Cargando…
Domain-Aware Few-Shot Learning for Optical Coherence Tomography Noise Reduction
Speckle noise has long been an extensively studied problem in medical imaging. In recent years, there have been significant advances in leveraging deep learning methods for noise reduction. Nevertheless, adaptation of supervised learning models to unseen domains remains a challenging problem. Specif...
Autor principal: | Pereg, Deborah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672362/ https://www.ncbi.nlm.nih.gov/pubmed/37998084 http://dx.doi.org/10.3390/jimaging9110237 |
Ejemplares similares
-
Shot-noise limited, supercontinuum-based optical coherence tomography
por: Rao D. S., Shreesha, et al.
Publicado: (2021) -
Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain
por: Lin, Hong, et al.
Publicado: (2022) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Cross-domain few-shot learning based on pseudo-Siamese neural network
por: Gong, Yuxuan, et al.
Publicado: (2023) -
Speckle Noise Reduction in Optical Coherence Tomography Using Two-dimensional Curvelet-based Dictionary Learning
por: Esmaeili, Mahdad, et al.
Publicado: (2017)