Cargando…
The Use of Artificial Intelligence for the Classification of Craniofacial Deformities
Positional cranial deformities are a common finding in toddlers, yet differentiation from craniosynostosis can be challenging. The aim of this study was to train convolutional neural networks (CNNs) to classify craniofacial deformities based on 2D images generated using photogrammetry as a radiation...
Autores principales: | Kuehle, Reinald, Ringwald, Friedemann, Bouffleur, Frederic, Hagen, Niclas, Schaufelberger, Matthias, Nahm, Werner, Hoffmann, Jürgen, Freudlsperger, Christian, Engel, Michael, Eisenmann, Urs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672418/ https://www.ncbi.nlm.nih.gov/pubmed/38002694 http://dx.doi.org/10.3390/jcm12227082 |
Ejemplares similares
-
A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling
por: Schaufelberger, Matthias, et al.
Publicado: (2022) -
Accuracy of Patient-Specific Implants in Virtually Planned Segmental Le Fort I Osteotomies
por: Kuehle, Reinald, et al.
Publicado: (2023) -
Potential role of artificial intelligence in craniofacial surgery
por: Ryu, Jeong Yeop, et al.
Publicado: (2021) -
A novel approach to determining augmented bone volume in intraoral bone block augmentation using an intraoral scanner: an in vitro study
por: Frederic, Weichel, et al.
Publicado: (2023) -
Inoperable or incompletely resected craniofacial osteosarcoma treated by particle radiotherapy
por: Seidensaal, Katharina, et al.
Publicado: (2022)