Cargando…
A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves
Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672698/ https://www.ncbi.nlm.nih.gov/pubmed/38005072 http://dx.doi.org/10.3390/ma16227142 |
_version_ | 1785149545860038656 |
---|---|
author | Yu, Haijun Zou, Ming Sun, Jinshan Wang, Yuntao Wang, Meng |
author_facet | Yu, Haijun Zou, Ming Sun, Jinshan Wang, Yuntao Wang, Meng |
author_sort | Yu, Haijun |
collection | PubMed |
description | Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configuration. Twelve models were established with different crack lengths to simulate sandstone samples. The influence of crack length on crack initiation and propagation was investigated using those models. The linear equation of state was used to express the relationship between the pressure and density of the material. The major principal stress failure criterion was used to evaluate the failure of elements. A triangular pressure curve was adopted to produce the blast stress wave. The results indicated that the pre-crack length critically influenced the crack initiation and propagation mechanism by analyzing the stress history at the crack tip, crack propagation velocity, and distance. The inducement of a P-wave and S-wave is paramount in models with a short pre-crack. For long pre-crack models, Rayleigh waves significantly contribute to crack propagation. |
format | Online Article Text |
id | pubmed-10672698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106726982023-11-13 A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves Yu, Haijun Zou, Ming Sun, Jinshan Wang, Yuntao Wang, Meng Materials (Basel) Article Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configuration. Twelve models were established with different crack lengths to simulate sandstone samples. The influence of crack length on crack initiation and propagation was investigated using those models. The linear equation of state was used to express the relationship between the pressure and density of the material. The major principal stress failure criterion was used to evaluate the failure of elements. A triangular pressure curve was adopted to produce the blast stress wave. The results indicated that the pre-crack length critically influenced the crack initiation and propagation mechanism by analyzing the stress history at the crack tip, crack propagation velocity, and distance. The inducement of a P-wave and S-wave is paramount in models with a short pre-crack. For long pre-crack models, Rayleigh waves significantly contribute to crack propagation. MDPI 2023-11-13 /pmc/articles/PMC10672698/ /pubmed/38005072 http://dx.doi.org/10.3390/ma16227142 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Haijun Zou, Ming Sun, Jinshan Wang, Yuntao Wang, Meng A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title | A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title_full | A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title_fullStr | A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title_full_unstemmed | A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title_short | A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves |
title_sort | numerical study of the dynamic crack behavior of brittle material induced by blast waves |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672698/ https://www.ncbi.nlm.nih.gov/pubmed/38005072 http://dx.doi.org/10.3390/ma16227142 |
work_keys_str_mv | AT yuhaijun anumericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT zouming anumericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT sunjinshan anumericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT wangyuntao anumericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT wangmeng anumericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT yuhaijun numericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT zouming numericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT sunjinshan numericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT wangyuntao numericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves AT wangmeng numericalstudyofthedynamiccrackbehaviorofbrittlematerialinducedbyblastwaves |