Cargando…
Bayesian Sequential Design for Identifying and Ranking Effective Patient Subgroups in Precision Medicine in the Case of Counting Outcome Data with Inflated Zeros
Precision medicine is revolutionizing health care, particularly by addressing patient variability due to different biological profiles. As traditional treatments may not always be appropriate for certain patient subsets, the rise of biomarker-stratified clinical trials has driven the need for innova...
Autores principales: | Vinnat, Valentin, Annane, Djillali, Chevret, Sylvie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672716/ https://www.ncbi.nlm.nih.gov/pubmed/38003875 http://dx.doi.org/10.3390/jpm13111560 |
Ejemplares similares
-
Enrichment Bayesian design for randomized clinical trials using categorical biomarkers and a binary outcome
por: Vinnat, Valentin, et al.
Publicado: (2022) -
Simulation study for evaluating an adaptive-randomisation Bayesian hybrid trial design with enrichment
por: Vinnat, Valentin, et al.
Publicado: (2023) -
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
Bayesian clustering of multiple zero-inflated outcomes
por: Franzolini, Beatrice, et al.
Publicado: (2023)