Cargando…
Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion
This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining inf...
Autores principales: | Shang, Suiyan, Wang, Chunjin, Liang, Xiaoliang, Cheung, Chi Fai, Zheng, Pai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673044/ https://www.ncbi.nlm.nih.gov/pubmed/38004873 http://dx.doi.org/10.3390/mi14112016 |
Ejemplares similares
-
Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning
por: Zeng, Shi, et al.
Publicado: (2023) -
An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement
por: Zhao, Chen-Yang, et al.
Publicado: (2021) -
Editorial for the Special Issue on “Frontiers of Ultra-Precision Machining”
por: Guo, Jiang, et al.
Publicado: (2022) -
Characterization of Surface Topography Variation in the Ultra-Precision Tool Servo-Based Diamond Cutting of 3D Microstructured Surfaces
por: Yuan, Wei, et al.
Publicado: (2021) -
Effect of parameters on surface roughness during the ultra-precision polishing of titanium alloy
por: Lou, Yonggou, et al.
Publicado: (2022)