Cargando…
Robust Machine Learning Framework for Modeling the Compressive Strength of SFRC: Database Compilation, Predictive Analysis, and Empirical Verification
In recent years, the field of construction engineering has experienced a significant paradigm shift, embracing the integration of machine learning (ML) methodologies, with a particular emphasis on forecasting the characteristics of steel-fiber-reinforced concrete (SFRC). Despite the theoretical soph...
Autores principales: | Abbas, Yassir M., Khan, Mohammad Iqbal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673118/ https://www.ncbi.nlm.nih.gov/pubmed/38005107 http://dx.doi.org/10.3390/ma16227178 |
Ejemplares similares
-
Dynamic Compressive Strength Tests of Corroded SFRC Exposed to Drying–Wetting Cycles with a 37 mm Diameter SHPB
por: Chen, Hui, et al.
Publicado: (2021) -
The Development of Controlled Orientation of Fibres in SFRC
por: Ďubek, Marek, et al.
Publicado: (2021) -
Simplex-Lattice Hydration Prediction and Microstructure Verification of Cementitious Systems
por: Khan, Mohammad Iqbal, et al.
Publicado: (2019) -
Effect of the Microsand Fraction on the Ballistic Resistance of UHP-SFRC
por: Kheml, Přemysl, et al.
Publicado: (2022) -
Study on Adaptability of Test Methods for Workability of Fresh Self-Compacting SFRC
por: Ding, Xinxin, et al.
Publicado: (2021)