Cargando…
Application of Machine Learning Methods to Predict the Air Half-Lives of Persistent Organic Pollutants
Persistent organic pollutants (POPs) are ubiquitous and bioaccumulative, posing potential and long-term threats to human health and the ecological environment. Quantitative structure–activity relationship (QSAR) studies play a guiding role in analyzing the toxicity and environmental fate of differen...
Autores principales: | Zhang, Ying, Xie, Liangxu, Zhang, Dawei, Xu, Xiaojun, Xu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673120/ https://www.ncbi.nlm.nih.gov/pubmed/38005179 http://dx.doi.org/10.3390/molecules28227457 |
Ejemplares similares
-
Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations
por: Xu, Lei, et al.
Publicado: (2022) -
Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning
por: Xie, Liangxu, et al.
Publicado: (2020) -
Atmospheric Sampling of Persistent Organic Pollutants: Needs, Applications and Advances in Passive Air Sampling Techniques
por: Ockenden, Wendy A., et al.
Publicado: (2001) -
Persistent Organic Pollutants in Fresh Water Ecosystems
por: Xu, Fu-Liu, et al.
Publicado: (2013) -
Application of a Machine Learning Method for Prediction of Urban Neighborhood-Scale Air Pollution
por: Wai, Ka-Ming, et al.
Publicado: (2023)