Cargando…

Pore- and Core-Scale Recovery Performance of Consortium Bacteria from Low-Permeability Reservoir

Performance evaluation of microorganisms that have emulsifying and degrading effects on crude oil has been extensively conducted in the laboratory. However, the ultimate goal of microbial enhanced oil recovery is field application, so the pilot simulation experiments are crucial. In this study, a mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bian, Ziwei, Song, Zhiyong, Zhi, Zena, Zhang, Xiangchun, Qu, Yiqian, Chai, Ruiyang, Wu, Hanning, Wu, Yifei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673141/
https://www.ncbi.nlm.nih.gov/pubmed/38004748
http://dx.doi.org/10.3390/microorganisms11112738
Descripción
Sumario:Performance evaluation of microorganisms that have emulsifying and degrading effects on crude oil has been extensively conducted in the laboratory. However, the ultimate goal of microbial enhanced oil recovery is field application, so the pilot simulation experiments are crucial. In this study, a micro-visualization model and the real cores were chosen to investigate the actual recovery efficiency and the mechanism of the consortium bacteria B-ALL, which has been proven to have good emulsification and degradation effects in lab studies in porous media. At the same time, the cast thin sections and rate-controlled porosimetry were combined to analyze the pore throat structure of the displacement core. It was found that the recovery efficiency was positively correlated with the microbial injection volume as well as the incubation time. For the microscopic model with high pores and high permeability, the efficiency of secondary water flooding can be increased by 44.77% after six days of incubation with two pore volume microbes. For the real tight cores, the maximum secondary water flooding efficiency under the same condition was 6.98%. Through visual modeling, microorganisms increase the oil washing efficiency mainly by emulsification and changing the wettability. The generated oil droplets will play a role in plugging and improving the wave efficiency. However, tight reservoirs have the characteristics of large pores and small throats, and curved and necking throats are developed, greatly reducing permeability. The microbial recovery efficiency was lower under shorter cultivation times. This study provides a practical basis for the application of consortium bacteria in tight oil fields to enhance recovery.