Cargando…

Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface

Laser polishing is a noncontact and efficient processing method for surface treatment of different materials. It removes surface material and improves its quality by means of a laser beam that acts directly on the surface of the material. The material surface roughness is a major criterion that eval...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chao, Zhao, Zhenyu, Zhou, Houming, Zeng, Junyong, Zhou, Zhanwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673162/
https://www.ncbi.nlm.nih.gov/pubmed/38004869
http://dx.doi.org/10.3390/mi14112012
_version_ 1785140557925842944
author Wang, Chao
Zhao, Zhenyu
Zhou, Houming
Zeng, Junyong
Zhou, Zhanwang
author_facet Wang, Chao
Zhao, Zhenyu
Zhou, Houming
Zeng, Junyong
Zhou, Zhanwang
author_sort Wang, Chao
collection PubMed
description Laser polishing is a noncontact and efficient processing method for surface treatment of different materials. It removes surface material and improves its quality by means of a laser beam that acts directly on the surface of the material. The material surface roughness is a major criterion that evaluates the polishing effect when alumina ceramics are polished by a laser. In this study, the effects of three factors, namely, laser power, scanning speed, and pulse frequency, on the surface roughness were investigated through orthogonal tests. The optimum polishing parameters were obtained through a comparison of the experimental results. Compared to the initial surface roughness (Ra = 1.624 μm), the roughness of the polished surface was reduced to Ra = 0.549 μm. A transient two-dimensional model was established by the COMSOL Multiphysics 5.5, and the flow condition of the material inside the molten pool of laser-polished alumina ceramics and the surface morphology of the smoothing process were investigated by utilizing the optimal polishing parameters obtained from the experiments. The simulation results showed that in the process of laser polishing, the fluid inside the molten pool flowed from the peaks to the valleys under the action of capillary force, and the inside of the molten pool tended to be smoothened gradually. In order to verify the correctness of the numerical model, the surface profile at the same position on the material surface was compared, and the results showed that the maximum error between the numerical simulation and the experimental results was 17.8%.
format Online
Article
Text
id pubmed-10673162
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106731622023-10-29 Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface Wang, Chao Zhao, Zhenyu Zhou, Houming Zeng, Junyong Zhou, Zhanwang Micromachines (Basel) Article Laser polishing is a noncontact and efficient processing method for surface treatment of different materials. It removes surface material and improves its quality by means of a laser beam that acts directly on the surface of the material. The material surface roughness is a major criterion that evaluates the polishing effect when alumina ceramics are polished by a laser. In this study, the effects of three factors, namely, laser power, scanning speed, and pulse frequency, on the surface roughness were investigated through orthogonal tests. The optimum polishing parameters were obtained through a comparison of the experimental results. Compared to the initial surface roughness (Ra = 1.624 μm), the roughness of the polished surface was reduced to Ra = 0.549 μm. A transient two-dimensional model was established by the COMSOL Multiphysics 5.5, and the flow condition of the material inside the molten pool of laser-polished alumina ceramics and the surface morphology of the smoothing process were investigated by utilizing the optimal polishing parameters obtained from the experiments. The simulation results showed that in the process of laser polishing, the fluid inside the molten pool flowed from the peaks to the valleys under the action of capillary force, and the inside of the molten pool tended to be smoothened gradually. In order to verify the correctness of the numerical model, the surface profile at the same position on the material surface was compared, and the results showed that the maximum error between the numerical simulation and the experimental results was 17.8%. MDPI 2023-10-29 /pmc/articles/PMC10673162/ /pubmed/38004869 http://dx.doi.org/10.3390/mi14112012 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Chao
Zhao, Zhenyu
Zhou, Houming
Zeng, Junyong
Zhou, Zhanwang
Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title_full Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title_fullStr Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title_full_unstemmed Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title_short Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface
title_sort numerical simulation and validation of laser polishing of alumina ceramic surface
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673162/
https://www.ncbi.nlm.nih.gov/pubmed/38004869
http://dx.doi.org/10.3390/mi14112012
work_keys_str_mv AT wangchao numericalsimulationandvalidationoflaserpolishingofaluminaceramicsurface
AT zhaozhenyu numericalsimulationandvalidationoflaserpolishingofaluminaceramicsurface
AT zhouhouming numericalsimulationandvalidationoflaserpolishingofaluminaceramicsurface
AT zengjunyong numericalsimulationandvalidationoflaserpolishingofaluminaceramicsurface
AT zhouzhanwang numericalsimulationandvalidationoflaserpolishingofaluminaceramicsurface