Cargando…
Therapies from Thiopeptides
The first part of this contribution describes solutions that were developed to achieve progressively more efficient syntheses of the thiopeptide natural products, micrococcins P1 and P2 (MP1–MP2), with an eye toward exploring their potential as a source of new antibiotics. Such efforts enabled inves...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673184/ https://www.ncbi.nlm.nih.gov/pubmed/38005301 http://dx.doi.org/10.3390/molecules28227579 |
Sumario: | The first part of this contribution describes solutions that were developed to achieve progressively more efficient syntheses of the thiopeptide natural products, micrococcins P1 and P2 (MP1–MP2), with an eye toward exploring their potential as a source of new antibiotics. Such efforts enabled investigations on the medicinal chemistry of those antibiotics, and inspired the development of the kinase inhibitor, Masitinib(®), two candidate oncology drugs, and new antibacterial agents. The studies that produced such therapeutic resources are detailed in the second part. True to the theme of this issue, “Organic Synthesis and Medicinal Chemistry: Two Inseparable Partners”, an important message is that the above advances would have never materialized without the support of curiosity-driven, academic synthetic organic chemistry: a beleaguered science that nonetheless has been—and continues to be—instrumental to progress in the biomedical field. |
---|