Cargando…
Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology
With the development and popularization of the Beidou-3 navigation satellite system (BDS-3), to ensure its unique short message function, it is necessary to integrate a radio frequency (RF) transmitting circuit with high performance in the BDS-3 terminal. As the key device in an RF transmitting circ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673261/ https://www.ncbi.nlm.nih.gov/pubmed/38004852 http://dx.doi.org/10.3390/mi14111995 |
_version_ | 1785140581036457984 |
---|---|
author | Li, Zhenbing Huang, Junjie Zhang, Jinrong Jia, Shilin Sun, Haoyang Li, Gang Wen, Guangjun |
author_facet | Li, Zhenbing Huang, Junjie Zhang, Jinrong Jia, Shilin Sun, Haoyang Li, Gang Wen, Guangjun |
author_sort | Li, Zhenbing |
collection | PubMed |
description | With the development and popularization of the Beidou-3 navigation satellite system (BDS-3), to ensure its unique short message function, it is necessary to integrate a radio frequency (RF) transmitting circuit with high performance in the BDS-3 terminal. As the key device in an RF transmitting circuit, the RF power amplifier (PA) largely determines the comprehensive performance of the circuit with its transmission power, efficiency, linearity, and integration. Therefore, in this paper, an L-band highly integrated PA chip compatible with 3 W and 5 W output power is designed in InGaP/GaAs heterojunction bipolar transistor (HBT) technology combined with temperature-insensitive adaptive bias technology, class-F harmonic suppression technology, analog pre-distortion technology, temperature-insensitive adaptive power detection technology, and land grid array (LGA) packaging technology. Additionally, three auxiliary platforms are proposed, dedicated to the simulation and optimization of the same type of PA designs. The simulation results show that at the supply voltage of 5 V and 3.5 V, the linear gain of the PA chip reaches 39.4 dB and 38.7 dB, respectively; the output power at 1 dB compression point (P1dB) reaches 37.5 dBm and 35.1 dBm, respectively; the saturated output power (Psat) reaches 38.2 dBm and 36.2 dBm, respectively; the power added efficiency (PAE) reaches 51.7% and 48.2%, respectively; and the higher harmonic suppression ratios are less than −62 dBc and −65 dBc, respectively. The size of the PA chip is only 6 × 4 × 1 mm(3). The results also show that the PA chip has high gain, high efficiency, and high linearity under both output power conditions, which has obvious advantages over similar PA chip designs and can meet the short message function of the BDS-3 terminal in various application scenarios. |
format | Online Article Text |
id | pubmed-10673261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106732612023-10-27 Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology Li, Zhenbing Huang, Junjie Zhang, Jinrong Jia, Shilin Sun, Haoyang Li, Gang Wen, Guangjun Micromachines (Basel) Article With the development and popularization of the Beidou-3 navigation satellite system (BDS-3), to ensure its unique short message function, it is necessary to integrate a radio frequency (RF) transmitting circuit with high performance in the BDS-3 terminal. As the key device in an RF transmitting circuit, the RF power amplifier (PA) largely determines the comprehensive performance of the circuit with its transmission power, efficiency, linearity, and integration. Therefore, in this paper, an L-band highly integrated PA chip compatible with 3 W and 5 W output power is designed in InGaP/GaAs heterojunction bipolar transistor (HBT) technology combined with temperature-insensitive adaptive bias technology, class-F harmonic suppression technology, analog pre-distortion technology, temperature-insensitive adaptive power detection technology, and land grid array (LGA) packaging technology. Additionally, three auxiliary platforms are proposed, dedicated to the simulation and optimization of the same type of PA designs. The simulation results show that at the supply voltage of 5 V and 3.5 V, the linear gain of the PA chip reaches 39.4 dB and 38.7 dB, respectively; the output power at 1 dB compression point (P1dB) reaches 37.5 dBm and 35.1 dBm, respectively; the saturated output power (Psat) reaches 38.2 dBm and 36.2 dBm, respectively; the power added efficiency (PAE) reaches 51.7% and 48.2%, respectively; and the higher harmonic suppression ratios are less than −62 dBc and −65 dBc, respectively. The size of the PA chip is only 6 × 4 × 1 mm(3). The results also show that the PA chip has high gain, high efficiency, and high linearity under both output power conditions, which has obvious advantages over similar PA chip designs and can meet the short message function of the BDS-3 terminal in various application scenarios. MDPI 2023-10-27 /pmc/articles/PMC10673261/ /pubmed/38004852 http://dx.doi.org/10.3390/mi14111995 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Zhenbing Huang, Junjie Zhang, Jinrong Jia, Shilin Sun, Haoyang Li, Gang Wen, Guangjun Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title | Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title_full | Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title_fullStr | Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title_full_unstemmed | Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title_short | Design of Power Amplifiers for BDS-3 Terminal Based on InGaP/GaAs HBT MMIC and LGA Technology |
title_sort | design of power amplifiers for bds-3 terminal based on ingap/gaas hbt mmic and lga technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673261/ https://www.ncbi.nlm.nih.gov/pubmed/38004852 http://dx.doi.org/10.3390/mi14111995 |
work_keys_str_mv | AT lizhenbing designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT huangjunjie designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT zhangjinrong designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT jiashilin designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT sunhaoyang designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT ligang designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology AT wenguangjun designofpoweramplifiersforbds3terminalbasedoningapgaashbtmmicandlgatechnology |