Cargando…
Surface Roughness Prediction of Titanium Alloy during Abrasive Belt Grinding Based on an Improved Radial Basis Function (RBF) Neural Network
Titanium alloys have become an indispensable material for all walks of life because of their excellent strength and corrosion resistance. However, grinding titanium alloy is exceedingly challenging due to its pronounced material characteristics. Therefore, it is crucial to create a theoretical rough...
Autores principales: | Shan, Kun, Zhang, Yashuang, Lan, Yingduo, Jiang, Kaimeng, Xiao, Guijian, Li, Benkai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673320/ https://www.ncbi.nlm.nih.gov/pubmed/38005153 http://dx.doi.org/10.3390/ma16227224 |
Ejemplares similares
-
Prediction of Surface Roughness of Abrasive Belt Grinding of Superalloy Material Based on RLSOM-RBF
por: Liu, Ying, et al.
Publicado: (2021) -
Study of Surface Integrity of Titanium Alloy (TC4) by Belt Grinding to Achieve the Same Surface Roughness Range
por: Jiang, Guiyun, et al.
Publicado: (2022) -
Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life
por: He, Yi, et al.
Publicado: (2018) -
Advances in grinding and abrasive processes
por: Xu, Xi Peng
Publicado: (2004) -
Relationship between Pressure and Output Parameters in Belt Grinding of Steels and Nickel Alloy
por: Syreyshchikova, Nelli Vladimirovna, et al.
Publicado: (2021)