Cargando…
Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction
Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a dist...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673347/ https://www.ncbi.nlm.nih.gov/pubmed/38005261 http://dx.doi.org/10.3390/molecules28227541 |
_version_ | 1785140601343180800 |
---|---|
author | Taleb, Batoul Jahjah, Rabih Cornu, David Bechelany, Mikhael Al Ajami, Mohamad Kataya, Ghenwa Hijazi, Akram El-Dakdouki, Mohammad H. |
author_facet | Taleb, Batoul Jahjah, Rabih Cornu, David Bechelany, Mikhael Al Ajami, Mohamad Kataya, Ghenwa Hijazi, Akram El-Dakdouki, Mohammad H. |
author_sort | Taleb, Batoul |
collection | PubMed |
description | Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as the hydrogen source in the presence of a catalyst. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Moreover, the diverse range of hydrogen donor molecules utilized in this reaction have been explored, shedding light on their unique properties and their impact on catalytic systems and the mechanism elucidation of some reactions. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. The compatibility of these donors with various catalysts, substrates, and reaction conditions were all discussed. Furthermore, this paper outlines future trends which include the utilization of biomass-derived hydrogen donors, the exploration of hydrogen storage materials such as metal-organic frameworks (MOFs), catalyst development for enhanced activity and recyclability, and the utilization of eco-friendly solvents such as glycerol and ionic liquids. Innovative heating methods, diverse base materials, and continued research into catalyst-hydrogen donor interactions are aimed to shape the future of catalytic transfer hydrogenation, enhancing its selectivity and efficiency across various industries and applications. |
format | Online Article Text |
id | pubmed-10673347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106733472023-11-11 Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction Taleb, Batoul Jahjah, Rabih Cornu, David Bechelany, Mikhael Al Ajami, Mohamad Kataya, Ghenwa Hijazi, Akram El-Dakdouki, Mohammad H. Molecules Review Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as the hydrogen source in the presence of a catalyst. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Moreover, the diverse range of hydrogen donor molecules utilized in this reaction have been explored, shedding light on their unique properties and their impact on catalytic systems and the mechanism elucidation of some reactions. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. The compatibility of these donors with various catalysts, substrates, and reaction conditions were all discussed. Furthermore, this paper outlines future trends which include the utilization of biomass-derived hydrogen donors, the exploration of hydrogen storage materials such as metal-organic frameworks (MOFs), catalyst development for enhanced activity and recyclability, and the utilization of eco-friendly solvents such as glycerol and ionic liquids. Innovative heating methods, diverse base materials, and continued research into catalyst-hydrogen donor interactions are aimed to shape the future of catalytic transfer hydrogenation, enhancing its selectivity and efficiency across various industries and applications. MDPI 2023-11-11 /pmc/articles/PMC10673347/ /pubmed/38005261 http://dx.doi.org/10.3390/molecules28227541 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Taleb, Batoul Jahjah, Rabih Cornu, David Bechelany, Mikhael Al Ajami, Mohamad Kataya, Ghenwa Hijazi, Akram El-Dakdouki, Mohammad H. Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title | Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title_full | Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title_fullStr | Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title_full_unstemmed | Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title_short | Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction |
title_sort | exploring hydrogen sources in catalytic transfer hydrogenation: a review of unsaturated compound reduction |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673347/ https://www.ncbi.nlm.nih.gov/pubmed/38005261 http://dx.doi.org/10.3390/molecules28227541 |
work_keys_str_mv | AT talebbatoul exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT jahjahrabih exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT cornudavid exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT bechelanymikhael exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT alajamimohamad exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT katayaghenwa exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT hijaziakram exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction AT eldakdoukimohammadh exploringhydrogensourcesincatalytictransferhydrogenationareviewofunsaturatedcompoundreduction |