Cargando…

Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage

The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, cry...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hualei, Wang, Xinlei, Zhou, Jie, Tang, Weihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673354/
https://www.ncbi.nlm.nih.gov/pubmed/38005202
http://dx.doi.org/10.3390/molecules28227479
Descripción
Sumario:The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, crystallinity and morphology of UiO-66-NO(2) MOFs were finely controlled in the presence of CNTs. The MOFs’ covalent anchoring to CNTs and solvothermal grafting anthraquinone (AQ) pendants endow the hybrid (denoted as CNT@UiO-66-AQ) with greatly improved conductivity, charge storage pathways and electrochemical dynamics. The flexible CNT@UiO-66-AQ displays a highest areal specific capacitance of 302.3 mF cm(−2) (at 1 mA cm(−2)) in −0.4~0.9 V potential window, together with 100% capacitance retention over 5000 cycles at 5 mA cm(−2). Its assembled symmetrical supercapacitor (SSC) achieves a maximum energy density of 0.037 mWh cm(−2) and a maximum power density of 10.4 mW cm(−2), outperforming many MOFs-hybrids-based SSCs in the literature. Our work may open a new avenue for preparing azo-coupled redox MOFs hybrids with carbaneous substrates for high-performance robust aqueous energy storage.