Cargando…
Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, cry...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673354/ https://www.ncbi.nlm.nih.gov/pubmed/38005202 http://dx.doi.org/10.3390/molecules28227479 |
_version_ | 1785140602991542272 |
---|---|
author | Zhang, Hualei Wang, Xinlei Zhou, Jie Tang, Weihua |
author_facet | Zhang, Hualei Wang, Xinlei Zhou, Jie Tang, Weihua |
author_sort | Zhang, Hualei |
collection | PubMed |
description | The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, crystallinity and morphology of UiO-66-NO(2) MOFs were finely controlled in the presence of CNTs. The MOFs’ covalent anchoring to CNTs and solvothermal grafting anthraquinone (AQ) pendants endow the hybrid (denoted as CNT@UiO-66-AQ) with greatly improved conductivity, charge storage pathways and electrochemical dynamics. The flexible CNT@UiO-66-AQ displays a highest areal specific capacitance of 302.3 mF cm(−2) (at 1 mA cm(−2)) in −0.4~0.9 V potential window, together with 100% capacitance retention over 5000 cycles at 5 mA cm(−2). Its assembled symmetrical supercapacitor (SSC) achieves a maximum energy density of 0.037 mWh cm(−2) and a maximum power density of 10.4 mW cm(−2), outperforming many MOFs-hybrids-based SSCs in the literature. Our work may open a new avenue for preparing azo-coupled redox MOFs hybrids with carbaneous substrates for high-performance robust aqueous energy storage. |
format | Online Article Text |
id | pubmed-10673354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106733542023-11-08 Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage Zhang, Hualei Wang, Xinlei Zhou, Jie Tang, Weihua Molecules Article The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, crystallinity and morphology of UiO-66-NO(2) MOFs were finely controlled in the presence of CNTs. The MOFs’ covalent anchoring to CNTs and solvothermal grafting anthraquinone (AQ) pendants endow the hybrid (denoted as CNT@UiO-66-AQ) with greatly improved conductivity, charge storage pathways and electrochemical dynamics. The flexible CNT@UiO-66-AQ displays a highest areal specific capacitance of 302.3 mF cm(−2) (at 1 mA cm(−2)) in −0.4~0.9 V potential window, together with 100% capacitance retention over 5000 cycles at 5 mA cm(−2). Its assembled symmetrical supercapacitor (SSC) achieves a maximum energy density of 0.037 mWh cm(−2) and a maximum power density of 10.4 mW cm(−2), outperforming many MOFs-hybrids-based SSCs in the literature. Our work may open a new avenue for preparing azo-coupled redox MOFs hybrids with carbaneous substrates for high-performance robust aqueous energy storage. MDPI 2023-11-08 /pmc/articles/PMC10673354/ /pubmed/38005202 http://dx.doi.org/10.3390/molecules28227479 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Hualei Wang, Xinlei Zhou, Jie Tang, Weihua Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title | Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title_full | Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title_fullStr | Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title_full_unstemmed | Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title_short | Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage |
title_sort | azo-linkage redox metal–organic framework incorporating carbon nanotubes for high-performance aqueous energy storage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673354/ https://www.ncbi.nlm.nih.gov/pubmed/38005202 http://dx.doi.org/10.3390/molecules28227479 |
work_keys_str_mv | AT zhanghualei azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage AT wangxinlei azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage AT zhoujie azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage AT tangweihua azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage |