Cargando…

Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage

The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, cry...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hualei, Wang, Xinlei, Zhou, Jie, Tang, Weihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673354/
https://www.ncbi.nlm.nih.gov/pubmed/38005202
http://dx.doi.org/10.3390/molecules28227479
_version_ 1785140602991542272
author Zhang, Hualei
Wang, Xinlei
Zhou, Jie
Tang, Weihua
author_facet Zhang, Hualei
Wang, Xinlei
Zhou, Jie
Tang, Weihua
author_sort Zhang, Hualei
collection PubMed
description The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, crystallinity and morphology of UiO-66-NO(2) MOFs were finely controlled in the presence of CNTs. The MOFs’ covalent anchoring to CNTs and solvothermal grafting anthraquinone (AQ) pendants endow the hybrid (denoted as CNT@UiO-66-AQ) with greatly improved conductivity, charge storage pathways and electrochemical dynamics. The flexible CNT@UiO-66-AQ displays a highest areal specific capacitance of 302.3 mF cm(−2) (at 1 mA cm(−2)) in −0.4~0.9 V potential window, together with 100% capacitance retention over 5000 cycles at 5 mA cm(−2). Its assembled symmetrical supercapacitor (SSC) achieves a maximum energy density of 0.037 mWh cm(−2) and a maximum power density of 10.4 mW cm(−2), outperforming many MOFs-hybrids-based SSCs in the literature. Our work may open a new avenue for preparing azo-coupled redox MOFs hybrids with carbaneous substrates for high-performance robust aqueous energy storage.
format Online
Article
Text
id pubmed-10673354
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106733542023-11-08 Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage Zhang, Hualei Wang, Xinlei Zhou, Jie Tang, Weihua Molecules Article The design of well-defined hierarchical free-standing electrodes for robust high-performance energy storage is challenging. We report herein that azo-linkage redox metal–organic frameworks (MOFs) incorporate single-walled carbon nanotubes (CNTs) as flexible electrodes. The in situ-guided growth, crystallinity and morphology of UiO-66-NO(2) MOFs were finely controlled in the presence of CNTs. The MOFs’ covalent anchoring to CNTs and solvothermal grafting anthraquinone (AQ) pendants endow the hybrid (denoted as CNT@UiO-66-AQ) with greatly improved conductivity, charge storage pathways and electrochemical dynamics. The flexible CNT@UiO-66-AQ displays a highest areal specific capacitance of 302.3 mF cm(−2) (at 1 mA cm(−2)) in −0.4~0.9 V potential window, together with 100% capacitance retention over 5000 cycles at 5 mA cm(−2). Its assembled symmetrical supercapacitor (SSC) achieves a maximum energy density of 0.037 mWh cm(−2) and a maximum power density of 10.4 mW cm(−2), outperforming many MOFs-hybrids-based SSCs in the literature. Our work may open a new avenue for preparing azo-coupled redox MOFs hybrids with carbaneous substrates for high-performance robust aqueous energy storage. MDPI 2023-11-08 /pmc/articles/PMC10673354/ /pubmed/38005202 http://dx.doi.org/10.3390/molecules28227479 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Hualei
Wang, Xinlei
Zhou, Jie
Tang, Weihua
Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title_full Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title_fullStr Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title_full_unstemmed Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title_short Azo-Linkage Redox Metal–Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage
title_sort azo-linkage redox metal–organic framework incorporating carbon nanotubes for high-performance aqueous energy storage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673354/
https://www.ncbi.nlm.nih.gov/pubmed/38005202
http://dx.doi.org/10.3390/molecules28227479
work_keys_str_mv AT zhanghualei azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage
AT wangxinlei azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage
AT zhoujie azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage
AT tangweihua azolinkageredoxmetalorganicframeworkincorporatingcarbonnanotubesforhighperformanceaqueousenergystorage