Cargando…

Application and Research Status of Long-Wavelength Fluorescent Carbon Dots

This article discusses the application and research status of long-wavelength fluorescent carbon dots. Currently, there are two main methods for synthesising carbon dots (CDs), either from top to bottom, according to the bulk material, or from bottom to top, according to the small molecules. In prev...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Yujia, Yu, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673420/
https://www.ncbi.nlm.nih.gov/pubmed/38005195
http://dx.doi.org/10.3390/molecules28227473
_version_ 1785140618488446976
author Cheng, Yujia
Yu, Guang
author_facet Cheng, Yujia
Yu, Guang
author_sort Cheng, Yujia
collection PubMed
description This article discusses the application and research status of long-wavelength fluorescent carbon dots. Currently, there are two main methods for synthesising carbon dots (CDs), either from top to bottom, according to the bulk material, or from bottom to top, according to the small molecules. In previous research, mainly graphite and carbon fibres were used as raw materials with which to prepare CDs, using methods such as arc discharge, laser corrosion, and electrochemistry. These preparation methods have low quantum efficiencies and afford CDs that are limited to blue short-wavelength light emissions. With advancing research, the raw materials used for CD preparation have expanded from graphite to biomaterials, such as strawberry, lime juice, and silkworm chrysalis, and carbon-based molecules, such as citric acid, urea, and ethylenediamine (EDA). The preparation of CDs using carbon-based materials is more rapid and convenient because it involves the use of microwaves, ultrasonication, and hydrothermal techniques. Research on developing methods through which to prepare CDs has made great progress. The current research in this regard is focused on the synthesis of CDs, including long-wavelength fluorescent CDs, with a broader range of applications.
format Online
Article
Text
id pubmed-10673420
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106734202023-11-08 Application and Research Status of Long-Wavelength Fluorescent Carbon Dots Cheng, Yujia Yu, Guang Molecules Review This article discusses the application and research status of long-wavelength fluorescent carbon dots. Currently, there are two main methods for synthesising carbon dots (CDs), either from top to bottom, according to the bulk material, or from bottom to top, according to the small molecules. In previous research, mainly graphite and carbon fibres were used as raw materials with which to prepare CDs, using methods such as arc discharge, laser corrosion, and electrochemistry. These preparation methods have low quantum efficiencies and afford CDs that are limited to blue short-wavelength light emissions. With advancing research, the raw materials used for CD preparation have expanded from graphite to biomaterials, such as strawberry, lime juice, and silkworm chrysalis, and carbon-based molecules, such as citric acid, urea, and ethylenediamine (EDA). The preparation of CDs using carbon-based materials is more rapid and convenient because it involves the use of microwaves, ultrasonication, and hydrothermal techniques. Research on developing methods through which to prepare CDs has made great progress. The current research in this regard is focused on the synthesis of CDs, including long-wavelength fluorescent CDs, with a broader range of applications. MDPI 2023-11-08 /pmc/articles/PMC10673420/ /pubmed/38005195 http://dx.doi.org/10.3390/molecules28227473 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Cheng, Yujia
Yu, Guang
Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title_full Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title_fullStr Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title_full_unstemmed Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title_short Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
title_sort application and research status of long-wavelength fluorescent carbon dots
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673420/
https://www.ncbi.nlm.nih.gov/pubmed/38005195
http://dx.doi.org/10.3390/molecules28227473
work_keys_str_mv AT chengyujia applicationandresearchstatusoflongwavelengthfluorescentcarbondots
AT yuguang applicationandresearchstatusoflongwavelengthfluorescentcarbondots