Cargando…
Synthesis of C12-C18 Fatty Acid Isobornyl Esters
Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evalu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673531/ https://www.ncbi.nlm.nih.gov/pubmed/38005232 http://dx.doi.org/10.3390/molecules28227510 |
_version_ | 1785140644742692864 |
---|---|
author | Qin, Rongxiu Chen, Haiyan Wen, Rusi Liang, Zhongyun Meng, Zhonglei |
author_facet | Qin, Rongxiu Chen, Haiyan Wen, Rusi Liang, Zhongyun Meng, Zhonglei |
author_sort | Qin, Rongxiu |
collection | PubMed |
description | Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evaluated using toxicity tests. The optimum reaction conditions were as follows: n(lauric acid):n(camphene) = 2.5:1, m(titanium sulfate):m(camphene) = 0.25:1, reaction temperature of 80 °C, and reaction time of 25 h. Under these conditions, the content of isobornyl laurate in the product was 74.49%, and the content of purified product was 95.02%. The reaction kinetics for isobornyl laurate showed an apparent first-order reaction in the first 9 h with an activation energy of 31.01 kJ/mol. The reaction conditions of myristic acid, palmitic acid, and stearic acid were similar to those of lauric acid, but the reaction time had to be increased as the molecular weight of the fatty acid increased. Toxicity tests for four types of long-chain fatty acid isobornyl esters showed that the samples had low toxicity. |
format | Online Article Text |
id | pubmed-10673531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106735312023-11-09 Synthesis of C12-C18 Fatty Acid Isobornyl Esters Qin, Rongxiu Chen, Haiyan Wen, Rusi Liang, Zhongyun Meng, Zhonglei Molecules Article Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evaluated using toxicity tests. The optimum reaction conditions were as follows: n(lauric acid):n(camphene) = 2.5:1, m(titanium sulfate):m(camphene) = 0.25:1, reaction temperature of 80 °C, and reaction time of 25 h. Under these conditions, the content of isobornyl laurate in the product was 74.49%, and the content of purified product was 95.02%. The reaction kinetics for isobornyl laurate showed an apparent first-order reaction in the first 9 h with an activation energy of 31.01 kJ/mol. The reaction conditions of myristic acid, palmitic acid, and stearic acid were similar to those of lauric acid, but the reaction time had to be increased as the molecular weight of the fatty acid increased. Toxicity tests for four types of long-chain fatty acid isobornyl esters showed that the samples had low toxicity. MDPI 2023-11-09 /pmc/articles/PMC10673531/ /pubmed/38005232 http://dx.doi.org/10.3390/molecules28227510 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qin, Rongxiu Chen, Haiyan Wen, Rusi Liang, Zhongyun Meng, Zhonglei Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title | Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title_full | Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title_fullStr | Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title_full_unstemmed | Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title_short | Synthesis of C12-C18 Fatty Acid Isobornyl Esters |
title_sort | synthesis of c12-c18 fatty acid isobornyl esters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673531/ https://www.ncbi.nlm.nih.gov/pubmed/38005232 http://dx.doi.org/10.3390/molecules28227510 |
work_keys_str_mv | AT qinrongxiu synthesisofc12c18fattyacidisobornylesters AT chenhaiyan synthesisofc12c18fattyacidisobornylesters AT wenrusi synthesisofc12c18fattyacidisobornylesters AT liangzhongyun synthesisofc12c18fattyacidisobornylesters AT mengzhonglei synthesisofc12c18fattyacidisobornylesters |