Cargando…
Optimizing the Performance of the Sparse Matrix–Vector Multiplication Kernel in FPGA Guided by the Roofline Model
The widespread adoption of massively parallel processors over the past decade has fundamentally transformed the landscape of high-performance computing hardware. This revolution has recently driven the advancement of FPGAs, which are emerging as an attractive alternative to power-hungry many-core de...
Autores principales: | Favaro, Federico, Dufrechou, Ernesto, Oliver, Juan P., Ezzatti, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673536/ https://www.ncbi.nlm.nih.gov/pubmed/38004887 http://dx.doi.org/10.3390/mi14112030 |
Ejemplares similares
-
Using High-Level Synthesis to Implement the Matrix-Vector Multiplication on FPGA
por: Marongiu, Alessandro, et al.
Publicado: (2020) -
Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions
por: Bramas, Bérenger, et al.
Publicado: (2018) -
Fast Generation of Sparse Random Kernel Graphs
por: Hagberg, Aric, et al.
Publicado: (2015) -
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Feature Extraction Using Sparse Kernel Non-Negative Matrix Factorization for Rolling Element Bearing Diagnosis
por: Liang, Lin, et al.
Publicado: (2021)