Cargando…

Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care

The term ‘data science’ usually refers to the process of extracting value from big data obtained from a large group of individuals. An alternative rendition, which we call personalized data science (Per-DS), aims to collect, analyze, and interpret personal data to inform personal decisions. This art...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Naihua, Norman, Daniel, Schmid, Christopher, Sim, Ida, Kravitz, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673628/
https://www.ncbi.nlm.nih.gov/pubmed/38009133
http://dx.doi.org/10.1162/99608f92.8439a336
_version_ 1785149624492752896
author Duan, Naihua
Norman, Daniel
Schmid, Christopher
Sim, Ida
Kravitz, Richard L.
author_facet Duan, Naihua
Norman, Daniel
Schmid, Christopher
Sim, Ida
Kravitz, Richard L.
author_sort Duan, Naihua
collection PubMed
description The term ‘data science’ usually refers to the process of extracting value from big data obtained from a large group of individuals. An alternative rendition, which we call personalized data science (Per-DS), aims to collect, analyze, and interpret personal data to inform personal decisions. This article describes the main features of Per-DS, and reviews its current state and future outlook. A Per-DS investigation is of, by, and for an individual, the Per-DS investigator, acting simultaneously as her own investigator, study participant, and beneficiary, and making personalized decisions for study design and implementation. The scope of Per-DS studies may include systematic monitoring of physiological or behavioral patterns, case-crossover studies for symptom triggers, pre-post trials for exposure–outcome relationships, and personalized (N-of-1) trials for effectiveness. Per-DS studies produce personal knowledge generalizable to the individual’s future self (thus benefiting herself) rather than knowledge generalizable to an external population (thus benefiting others). This endeavor requires a pivot from data mining or extraction to data gardening, analogous to home gardeners producing food for home consumption—the Per-DS investigator needs to ‘cultivate the field’ by setting goals, specifying study design, identifying necessary data elements, and assembling instruments and tools for data collection. Then, she can implement the study protocol, harvest her personal data, and mine the data to extract personal knowledge. To facilitate Per-DS studies, Per-DS investigators need support from community-based, scientific, philanthropic, business, and government entities, to develop and deploy resources such as peer forums, mobile apps, ‘virtual field guides,’ and scientific and regulatory guidance.
format Online
Article
Text
id pubmed-10673628
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-106736282023-11-24 Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care Duan, Naihua Norman, Daniel Schmid, Christopher Sim, Ida Kravitz, Richard L. Harv Data Sci Rev Article The term ‘data science’ usually refers to the process of extracting value from big data obtained from a large group of individuals. An alternative rendition, which we call personalized data science (Per-DS), aims to collect, analyze, and interpret personal data to inform personal decisions. This article describes the main features of Per-DS, and reviews its current state and future outlook. A Per-DS investigation is of, by, and for an individual, the Per-DS investigator, acting simultaneously as her own investigator, study participant, and beneficiary, and making personalized decisions for study design and implementation. The scope of Per-DS studies may include systematic monitoring of physiological or behavioral patterns, case-crossover studies for symptom triggers, pre-post trials for exposure–outcome relationships, and personalized (N-of-1) trials for effectiveness. Per-DS studies produce personal knowledge generalizable to the individual’s future self (thus benefiting herself) rather than knowledge generalizable to an external population (thus benefiting others). This endeavor requires a pivot from data mining or extraction to data gardening, analogous to home gardeners producing food for home consumption—the Per-DS investigator needs to ‘cultivate the field’ by setting goals, specifying study design, identifying necessary data elements, and assembling instruments and tools for data collection. Then, she can implement the study protocol, harvest her personal data, and mine the data to extract personal knowledge. To facilitate Per-DS studies, Per-DS investigators need support from community-based, scientific, philanthropic, business, and government entities, to develop and deploy resources such as peer forums, mobile apps, ‘virtual field guides,’ and scientific and regulatory guidance. 2022 2022-09-08 /pmc/articles/PMC10673628/ /pubmed/38009133 http://dx.doi.org/10.1162/99608f92.8439a336 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This article is licensed under a Creative Commons Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by-nc-nd/4.0/) , except where otherwise indicated with respect to particular material included in the article.
spellingShingle Article
Duan, Naihua
Norman, Daniel
Schmid, Christopher
Sim, Ida
Kravitz, Richard L.
Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title_full Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title_fullStr Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title_full_unstemmed Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title_short Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care
title_sort personalized data science and personalized (n-of-1) trials: promising paradigms for individualized health care
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673628/
https://www.ncbi.nlm.nih.gov/pubmed/38009133
http://dx.doi.org/10.1162/99608f92.8439a336
work_keys_str_mv AT duannaihua personalizeddatascienceandpersonalizednof1trialspromisingparadigmsforindividualizedhealthcare
AT normandaniel personalizeddatascienceandpersonalizednof1trialspromisingparadigmsforindividualizedhealthcare
AT schmidchristopher personalizeddatascienceandpersonalizednof1trialspromisingparadigmsforindividualizedhealthcare
AT simida personalizeddatascienceandpersonalizednof1trialspromisingparadigmsforindividualizedhealthcare
AT kravitzrichardl personalizeddatascienceandpersonalizednof1trialspromisingparadigmsforindividualizedhealthcare