Cargando…
Imputation method for single-cell RNA-seq data using neural topic model
Single-cell RNA sequencing (scRNA-seq) technology studies transcriptome and cell-to-cell differences from higher single-cell resolution and different perspectives. Despite the advantage of high capture efficiency, downstream functional analysis of scRNA-seq data is made difficult by the excess of ze...
Autores principales: | Qi, Yueyang, Han, Shuangkai, Tang, Lin, Liu, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673642/ https://www.ncbi.nlm.nih.gov/pubmed/38000911 http://dx.doi.org/10.1093/gigascience/giad098 |
Ejemplares similares
-
ascend: R package for analysis of single-cell RNA-seq data
por: Senabouth, Anne, et al.
Publicado: (2019) -
Genomic data imputation with variational auto-encoders
por: Qiu, Yeping Lina, et al.
Publicado: (2020) -
2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions
por: Zhu, Kaiyi, et al.
Publicado: (2020) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018)