Cargando…
Translation of tissue-based artificial intelligence into clinical practice: from discovery to adoption
Digital pathology (DP), or the digitization of pathology images, has transformed oncology research and cancer diagnostics. The application of artificial intelligence (AI) and other forms of machine learning (ML) to these images allows for better interpretation of morphology, improved quantitation of...
Autores principales: | Geaney, Alice, O’Reilly, Paul, Maxwell, Perry, James, Jacqueline A., McArt, Darragh, Salto-Tellez, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673711/ https://www.ncbi.nlm.nih.gov/pubmed/37875656 http://dx.doi.org/10.1038/s41388-023-02857-6 |
Ejemplares similares
-
Particle swarm optimization artificial intelligence technique for gene signature discovery in transcriptomic cohorts
por: Murphy, Ross G., et al.
Publicado: (2022) -
Embracing an integromic approach to tissue biomarker research in cancer: Perspectives and lessons learned
por: Li, Gerald, et al.
Publicado: (2017) -
Quantification of HER2 heterogeneity in breast cancer–implications for identification of sub-dominant clones for personalised treatment
por: Buckley, Niamh E., et al.
Publicado: (2016) -
General Roadmap and Core Steps for the Development of AI Tools in Digital Pathology
por: Makhlouf, Yasmine, et al.
Publicado: (2022) -
Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer
por: Dunne, Philip D., et al.
Publicado: (2016)