Cargando…
Fairness-aware machine learning engineering: how far are we?
Machine learning is part of the daily life of people and companies worldwide. Unfortunately, bias in machine learning algorithms risks unfairly influencing the decision-making process and reiterating possible discrimination. While the interest of the software engineering community in software fairne...
Autores principales: | Ferrara, Carmine, Sellitto, Giulia, Ferrucci, Filomena, Palomba, Fabio, De Lucia, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673752/ https://www.ncbi.nlm.nih.gov/pubmed/38027253 http://dx.doi.org/10.1007/s10664-023-10402-y |
Ejemplares similares
-
Static test flakiness prediction: How Far Can We Go?
por: Pontillo, Valeria, et al.
Publicado: (2022) -
How Far Will We See in the Future?
por: Nasmyth, Kim
Publicado: (2010) -
Milestones in Heart Failure: How Far We Have Come and How Far We Have Left to Go
por: Gajjela, Harini, et al.
Publicado: (2021) -
Paediatric Surgery on the African Continent: How Far Have We Come; How Far Can We Go?
por: Numanoglu, Alp
Publicado: (2023) -
Antibody Conjugates for Sarcoma Therapy: How Far along Are We?
por: Polito, Letizia, et al.
Publicado: (2021)