Cargando…
Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics
When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepa...
Autores principales: | Shuttleworth, Joseph G., Lei, Chon Lok, Whittaker, Dominic G., Windley, Monique J., Hill, Adam P., Preston, Simon P., Mirams, Gary R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673765/ https://www.ncbi.nlm.nih.gov/pubmed/37999811 http://dx.doi.org/10.1007/s11538-023-01224-6 |
Ejemplares similares
-
A nonlinear and time-dependent leak current in the presence of calcium fluoride patch-clamp seal enhancer
por: Lei, Chon Lok, et al.
Publicado: (2021) -
Calibration of ionic and cellular cardiac electrophysiology models
por: Whittaker, Dominic G., et al.
Publicado: (2020) -
Considering discrepancy when calibrating a mechanistic electrophysiology model
por: Lei, Chon Lok, et al.
Publicado: (2020) -
Ion channel model reduction using manifold boundaries
por: Whittaker, Dominic G., et al.
Publicado: (2022) -
Uncertainty quantification for hyperbolic and kinetic equations
por: Jin, Shi, et al.
Publicado: (2017)