Cargando…

Response surface optimization of process parameters for preparation of cellulose nanocrystal stabilized nanosulphur suspension

This study employed response surface methodology (RSM) to optimize various parameters involved in the synthesis of nanosulphur (NS) stabilized by cellulose nanocrystals (CNCs). The elemental sulphur (ES) mixed with CNCs was processed in a high-pressure homogenizer to make a stable formulation of CNC...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahawar, Manoj Kumar, Bharimalla, Ashok Kumar, Arputharaj, A., Palkar, Jagdish, Dhakane-Lad, Jyoti, Jalgaonkar, Kirti, Vigneshwaran, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673880/
https://www.ncbi.nlm.nih.gov/pubmed/38001094
http://dx.doi.org/10.1038/s41598-023-47164-y
Descripción
Sumario:This study employed response surface methodology (RSM) to optimize various parameters involved in the synthesis of nanosulphur (NS) stabilized by cellulose nanocrystals (CNCs). The elemental sulphur (ES) mixed with CNCs was processed in a high-pressure homogenizer to make a stable formulation of CNC-stabilized NS (CNC-NS). RSM was adopted to formulate the experiments using Box-Behnken design (BBD) by considering three independent variables i.e., ES (5, 10, 15 g), CNCs (25, 50, 75 ml), and the number of passes (NP) in the high-pressure homogenizer (1, 2, 3). For the prepared suspensions (CNC-NS), the range of the responses viz. settling time (0.84–20.60 min), particle size (500.41–1432.62 nm), viscosity (29.20–420.60 cP), and surface tension (60.35–73.61 N/m) were observed. The numerical optimization technique was followed by keeping the independent and dependent factors in the range yielded in the optimized solution viz. 46 ml (CNCs), 8 g (ES), and 2 (NP). It was interpreted from the findings that the stability of the suspension had a positive correlation with the amount of CNC while the increasing proportion of ES resulted in reduced stability. The quadratic model was fitted adequately to all the responses as justified with the higher coefficient of determination (R(2) ≥ 0.88). The characterization performed by X-ray diffraction (XRD), zeta potential, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) revealed better-stabilizing properties of the optimized CNCs–ES suspension. The study confirmed that CNCs have the potential to be utilized as a stabilizing agent in synthesizing stable nanosulphur formulation by high-pressure homogenization.