Cargando…
Abundant production of dimethylsulfoniopropionate as a cryoprotectant by freshwater phytoplanktonic dinoflagellates in ice-covered Lake Baikal
Phytoplanktonic dinoflagellates form colonies between vertical ice crystals during the ice-melting season in Lake Baikal, but how the plankton survive the freezing conditions is not known. Here we show that the phytoplankton produces large amounts of dimethylsulfoniopropionate (DMSP), which is best-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674015/ https://www.ncbi.nlm.nih.gov/pubmed/38001159 http://dx.doi.org/10.1038/s42003-023-05573-9 |
Sumario: | Phytoplanktonic dinoflagellates form colonies between vertical ice crystals during the ice-melting season in Lake Baikal, but how the plankton survive the freezing conditions is not known. Here we show that the phytoplankton produces large amounts of dimethylsulfoniopropionate (DMSP), which is best-known as a marine compound. Lake-water DMSP concentrations in the spring season are comparable with those in the oceans, and colony water in ice exhibits extremely high concentrations. DMSP concentration of surface water correlates with plankton density and reaches a maximum in mid-April, with temperature-dependent fluctuations. DMSP is released from plankton cells into water in warm days. DMSP is a characteristic osmolyte of marine algae; our results demonstrate that freshwater plankton, Gymnodinium baicalense, has DMSP-producing ability, and efficiently uses the limited sulfur resource (only 1/500 of sea sulfate) to survive in freshwater ice. Plankton in Lake Baikal do not need an osmolyte, and our results clearly indicate that DMSP plays a cryoprotective role. DMSP, although a characteristic marine compound, could also be an important zwitterion for algae of other boreal lakes, alpine snow, and glaciers. |
---|