Cargando…

A Method to Generate and Rescue Recombinant Adenovirus Devoid of Replication-Competent Particles in Animal-Origin-Free Culture Medium

Adenoviruses are promising vectors for vaccine production and gene therapy. Despite all the efforts in removing animal-derived components such as fetal bovine serum (FBS) during the production of adenovirus vector (AdV), FBS is still frequently employed in the early stages of production. Conventiona...

Descripción completa

Detalles Bibliográficos
Autores principales: Elahi, Seyyed Mehdy, Jiang, Jennifer, Nazemi-Moghaddam, Nazila, Gilbert, Rénald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674172/
https://www.ncbi.nlm.nih.gov/pubmed/38005830
http://dx.doi.org/10.3390/v15112152
Descripción
Sumario:Adenoviruses are promising vectors for vaccine production and gene therapy. Despite all the efforts in removing animal-derived components such as fetal bovine serum (FBS) during the production of adenovirus vector (AdV), FBS is still frequently employed in the early stages of production. Conventionally, first-generation AdVs (E1 deleted) are generated in different variants of adherent HEK293 cells, and plaque purification (if needed) is performed in adherent cell lines in the presence of FBS. In this study, we generated an AdV stock in SF-BMAdR (A549 cells adapted to suspension culture in serum-free medium). We also developed a limiting dilution method using the same cell line to replace the plaque purification assay. By combining these two technologies, we were able to completely remove the need for FBS from the process of generating and producing AdVs. In addition, we demonstrated that the purified AdV stock is free of any replication-competent adenovirus (RCA). Furthermore, we demonstrated that our limiting dilution method could effectively rescue an AdV from a stock that is highly contaminated with RCA.