Cargando…

Genetic Diversity of Barley Accessions from East Asia for Greenbug Resistance

The greenbug, Schizaphis graminum, is a dangerous pest of barley and other grain crops in the south of Russia. An effective and environmentally friendly way to control this insect is to cultivate resistant varieties. The differential interaction between the phytophage and host plants necessitates th...

Descripción completa

Detalles Bibliográficos
Autores principales: Radchenko, Evgeny E., Abdullaev, Renat A., Akimova, Daria E., Anisimova, Irina N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674194/
https://www.ncbi.nlm.nih.gov/pubmed/38005694
http://dx.doi.org/10.3390/plants12223797
Descripción
Sumario:The greenbug, Schizaphis graminum, is a dangerous pest of barley and other grain crops in the south of Russia. An effective and environmentally friendly way to control this insect is to cultivate resistant varieties. The differential interaction between the phytophage and host plants necessitates the search for new donors of resistance. Seven hundred and seventy-eight accessions of barley from East Asian countries (313 from China, 450 from Japan, and 15 from Nepal) were evaluated for greenbug resistance. The Krasnodar population of the insect and clones isolated from it were used in the experiments. Forty heterogeneous accessions were identified, in which plants with a high level of resistance to the aphid were found. As a result of damage assessment by the 108 S. graminum clones of 11 lines selected from heterogeneous accessions, 52 insect virulence phenotypes were identified. Experiments with aphid test clones showed that all 11 lines possess diverse greenbug resistance alleles, which differ from the previously identified Rsg1, but their efficiency is low. The frequency of clones virulent to ten lines and the cultivar Post (a carrier of the Rsg1 gene) varies from 60.4% to 98.0%. The exception is line 15903, which is resistant to the aphid population and protected by one dominant gene. The high resistance of other lines against a part of the natural population of S. graminum is also under oligogenic control. Lines 15600 and 16190 each have one dominant resistance gene, and line 28129 is protected by two genes, the dominant and recessive ones. A recessive resistance gene is presumably present in line 15600. Lines 16237/1 and 16237/2, isolated from the same collection accession, each have one dominant gene effective against individual aphid clones. The loss of effectiveness of distinctly manifested resistance genes causes the expression of previously masked genes with a weak phenotypic manifestation, which differentially interact with insect genotypes.